

Journal of Molecular Catalysis A: Chemical 133 (1998) 175-180

$\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4/1$ -octene catalytic system Part I: The influence of Cs⁺ and PO₄³⁻ on the metathesis activity

J.A.K. du Plessis^{a,*}, A. Spamer^b, H.C.M. Vosloo^a

^a SASOL Centre for Chemistry, Potchefstroomse Universiteit vir Christelike Hoër Onderwys, Potchefstroom 2520, South Africa ^b SASTECH R & D, P.O. Box 1, Sasolburg 9570, South Africa

Received 8 October 1997; accepted 2 March 1998

Abstract

The addition of small amounts (~ 2%) of Cs⁺ and/or $PO_4^{3^-}$ ions to a 3% $Re_2O_7/SiO_2 \cdot Al_2O_3/SnMe_4/1$ -octene catalytic system led to a significant increase in the metathesis activity of the system. If Cs⁺ and $PO_4^{3^-}$ ions are used, the activity of the system is determined by the sequence of impregnation on the SiO₂ · Al₂O₃ support with the different compounds. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Cs⁺; PO₄³⁻; Metathesis activity

1. Introduction

 Re_2O_7 on Al_2O_3 is an excellent metathesis catalyst and the reaction may be performed at temperatures from room temperature up to 100°C with terminal or internal alkenes in the gas or liquid phase [1–4]. This system is also suitable for the metathesis of alkenes that contain functional groups [1,2,4,5] if SnMe_4 is used as cocatalyst [5,6].

The support material is an important factor to consider regarding the activity of the Re_2O_7 catalyst system [7]. There exists a clear relationship between the metathesis activity of the Re_2O_7 catalyst and the Brønsted acid character of the support material [7,8].

Vuurman et al. [15] found two Re_2O_7 species after dehydration of the Al_2O_3 while the other was only present at the higher Re_2O_7 loading [14]. The ReO_4^- ions first react with Lewis acid centres on the Al_2O_3 but this species do not give metathesis active sites [7]. At the higher Re_2O_7 loading (76%), the interaction of $\text{ReO}_4^$ ions with Brønsted acid sites increase and therefore also the metathesis activity.

If Al_2O_3 is replaced by a silica–alumina $(SiO_2 \cdot Al_2O_3)$ support, a highly active metathesis catalyst is obtained [16,17]. In the presence of suitable cocatalysts the $Re_2O_7/SiO_2 \cdot Al_2O_3$

 $[\]text{Re}_2\text{O}_7$ is fixed on to the support by using an aqueous solution of NH_4ReO_4 [9,10]. The ReO_4^- ion reacts with the Al_2O_3 surface through the replacement of a surface OH group and then bonds via an oxygen bridge to the Al_2O_3 surface [11–14].

^{*} Corresponding author.

^{1381-1169/98/\$19.00 © 1998} Elsevier Science B.V. All rights reserved. *PII* \$1381-1169(98)00093-4

system is also active for the metathesis of functionalized alkenes [5,6]. Two types of OH groups on the silica–alumina support cause the Brønsted acid character [9,10,17]. One type of OH is bonded to the silicon while the other is a bridged OH between the silicon and aluminium [9,17]. During the activation of the system the $\text{ReO}_4^$ ions attach to the centres formerly occupied by the bridge OH groups [9,17].

If the impregnation of the Al_2O_3 support by a NH_4ReO_4 solution is preceded by the impregnation with a PO_4^{3-} containing solution, the system leads to a catalyst with a higher metathesis activity than the Re_2O_7/Al_2O_3 catalyst [10,18]. The higher activity may be ascribed to the change in strength of the Brønsted acidity on the support surface [10,18,19].

The metathesis activity of the silica– alumina-supported catalyst in general is much higher than the activity of the phosphated alumina. This is caused by the much stronger Brønsted acidity of these catalysts [20].

The addition of small amounts of alkali, alkali earth and thallium ions to heterogeneous catalyst systems, is especially effective in poisoning the acid points on the catalyst [1,21]. This will cause the decrease in double bond isomerisation and an increase in metathesis selectivity [22]. Sibeijn et al. [23] and Ellison et al. [24] reported that the addition of Cs⁺ ions to the Re₂O₇/Al₂O₃ catalyst system is most effective for the inhibition of side reactions such as isomerisation, polymerisation and coke formation. With a 3% Re₂O₇/SiO₂ · Al₂O₃ catalyst it was also found that with 1–2% Cs⁺ the selectivity of the catalyst increased considerably [25].

The addition of a cocatalyst such as SnR_4 to the Re_2O_7/Al_2O_3 catalyst increases the catalytic metathesis activity [26,27] for alkenes and also causes the metathesis of functionalized alkenes [4,17].

The 3% $\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4$ system is an excellent catalyst system for the metathesis of 1-alkenes. It produces a high yield of homometathesis products with a relatively low yield of cross metathesis products. In this

study we investigated the factors that influence the activity and selectivity of this system.

2. Experimental

2.1. Reagents

The reagents SnMe_4 (Merck) and 1-octene (Merck) were stored under N₂ after degassing. Other organic reagents were dried using standard methods and also stored under N₂.

NH₄ReO₄ (Strem Chemicals), SiO₂ · Al₂O₃ (Akzo-Nobel, HA-1,5E, 22,4% Al₂O₃, 347 m² g^{-1}), (NH₄)₂HPO₄, CsNO₃, γ -Al₂O₃ (Merck, 196.4 m² g⁻¹), Re₂O₇ (Aldrich) were used as received.

2.2. Apparatus

All glass apparatus were dried at 100°C and cooled under N_2 before use. Two-neck pear flasks were used as reactors. One of the necks was fitted with a septum so that liquid reagents could be introduced into the reactor by means of syringes.

2.3. Catalyst preparation

The catalyst support was dried at 100°C for 1 h before use. The 3% Re₂O₇ containing catalyst was prepared by mixing 0.134 g of NH₄ReO₄ $(5 \times 10^{-4} \text{ mol})$ in 4 cm³ water with 3 g of the support. This mixture was then dried at 100°C in air. In the cases where Cs⁺ or PO₄³⁻ ions were added, CsNO₃ or (NH₄)₄HPO₄ in 4 cm³ of water were used to impregnate the catalyst. After each impregnation step the catalyst was dried at 100°C. Analysis of the impregnated catalysts was done with ICP-AES methods.

2.4. Activation of the catalyst

The catalysts (0.11 g) were activated by heating in a glass tube in a stream of dry O_2 for 3 h followed by a stream of dry N_2 at 500°C for 2

h. The catalyst was then transferred under N_2 to the reactor.

2.5. Catalytic reactions

In a typical reaction 1 cm³ of PhCl containing 6.26×10^{-6} mol SnMe₄ was added to the catalyst in the reactor. After stirring the mixture for 5 min 0.3 cm³ of 1-octene (2 × 10⁻³ mol) was added. The reaction was terminated after a specific period by the removal of the catalyst. The remaining liquid was analysed by GC and GC-MS methods.

GC analyses were performed with a Fisons 8000 series GC equipped with a SE 30 (15 m × 0.53 mm × 1.2 μ m) capillary column and FID using the following conditions: inlet temperature 250°C, oven programmed from 40–250°C at 6°C min⁻¹; N₂ carrier gas and FID temperature 300°C.

The terms used in presenting the results are defined as follows:

Total metathesis: The total yield of all the metathesis products in the product spectrum and is calculated as $2(\sum_{n=9}^{14} \% C_n)$

Homometathesis: The sum of the primary metathesis products (C₂ and C₁₄) and is calculated as $2 \times \%$ C₁₄.

Cross metathesis: The sum of all the metathesis products with carbon chain lengths 3-7 and 9-13 and is calculated as $2(\sum_{n=9}^{13} \% C_n)$.

3. Results and discussion

Different factors that can influence the catalytic activity and selectivity of the $\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4/1$ -octene catalytic system, were studied.

3.1. Reaction time

The influence of reaction time on a 3% $Re_2O_7/SiO_2 \cdot Al_2O_3/SnMe_4$ catalyst system with a Sn:Re molar ratio = 2 (Fig. 1) indicates that the metathesis reaction equilibrium is

Fig. 1. The product yield as a function of reaction time for a $3\% \text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4/1$ -octene catalytic system. \star : Total metathesis, \blacksquare : homometathesis products, \blacklozenge : cross metathesis products.

reached after 240 min. This reaction time was used in all the further investigations.

3.2. Re_2O_7 content

By increasing the Re_2O_7 content of the $\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4$ system and keeping the Sn:Re molar ratio = 2 an increase in the homometathesis product yield is obtained up to a 3% Re_2O_7 content. Above 4% a decrease in

Fig. 2. The influence of the Re_2O_7 content on the metathesis activity of the $\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4/1$ -octene catalytic system. \star : Total metathesis, \blacksquare : homometathesis, \blacklozenge : cross metathesis.

the homometathesis product yield takes place while a rapid increase of the cross metathesis product yield is observed (Fig. 2). For further investigations a 3% Re_2O_7 content was used.

3.3. The Sn:Re molar ratio

From Fig. 3 it can be concluded that the maximum homometathesis product yield is reached at a Sn:Re molar ratio between 1:1 and 2:1 and the ratio 2:1 was used in the other experiments.

3.4. Addition of Cs⁺

The addition of 1% Cs⁺ to the 3% $\text{Re}_2\text{O}_7/\text{SiO}_2 \cdot \text{Al}_2\text{O}_3/\text{SnMe}_4/1\text{-octene}$ catalytic system increased the total metathesis product yield from 46 to 70% and the homometathesis product yield from 44 to 53% (Fig. 4). It also resulted in the increase of the cross metathesis product yield from 4–16%.

The sequence of the addition of Cs^+ and ReO_4^- ions onto the $SiO_2 \cdot Al_2O_3$ has no influence on the metathesis product yield distribution.

Fig. 3. The influence of the Sn:Re molar ratio on the metathesis activity of a $3\% \text{ Re}_2\text{O}_7/\text{SiO}_2\cdot\text{Al}_2\text{O}_3/\text{SnMe}_4/1$ -octene catalytic system. \bigstar : Total metathesis, \blacksquare : homometathesis, \blacklozenge : cross metathesis.

Fig. 4. The influence of the Cs⁺ content on the metathesis activity of a 3% Re₂O₇/SiO₂·Al₂O₃ / SnMe₄/l-octene catalytic system. \star : Total metathesis, \blacksquare : homometathesis, \blacklozenge : cross metathesis.

3.5. Addition of PO_4^{3-} ions

The addition of PO_4^{3-} ions did not only increase the metathesis product yield but also the products resulting from isomerisation and cross metathesis of the 1-octene (Fig. 5).

Maximum homometathesis yield of 52% is obtained with a 2% PO_4^{3-} content while a maxi-

Fig. 5. The influence of the $PO_4^{3^-}$ content on the metathesis activity of a 3% $Re_2O_7/SiO_2 \cdot Al_2O_3 / SnMe_4/1$ -octene catalytic system. \bigstar : Total metathesis, \blacksquare : homometathesis, \blacklozenge : cross metathesis.

Table 1

Comparison of the metathesis activity of different $Re_2O_7/SiO_2 \cdot Al_2O_3/SnMe_4/1$ -octene catalytic systems

Catalyst system	Total metathesis (%)	Homo metathesis (%)	Cross metathesis (%)
$3\% \text{ Re}_2 \text{O}_7 / \text{a}$	48	44	4
$2\% \text{ Cs}^+/3\% \text{ Re}_2 \text{O}_7/a$	69	53	16
$2\% {}^{b}PO_{4}^{3} / 3\% {}^{c}Re_{2}O_{7} / {}^{a}$	72	52	20
$2\% ^{\circ} PO_4^{3-}/3\% ^{b} Re_2 O_7/^{a}$	89	30	58
$2\% ^{\rm c}{\rm Cs}^+/2\% ^{\rm d}{\rm PO}_4^{3-}/3\% ^{\rm b}{\rm Re}_2{\rm O}_7/^{\rm a}$	72	53	19
$2\% {}^{d}Cs^{+}/2\% {}^{c}PO_{4}^{3-}/3\% {}^{b}Re_{2}O_{7}/{}^{a}$	69	54	15

^aSiO₂ · Al₂O₃/SnMe₄/1-octene.

^bAdded second.

^cAdded first.

^dAdded third.

mum cross metathesis yield of 25% is reached with a 3% PO_4^{3-} content.

The sequence of impregnation with $(NH_4)_2HPO_4$ and NH_4ReO_4 has a pronounced effect on the product yield. If the $SiO_2 \cdot Al_2O_3$ was first impregnated with NH_4ReO_4 the product yield was as follows: Total metathesis 89%, homometathesis 30% and cross metathesis 58%. If the $SiO_2 \cdot Al_2O_3$ was first impregnated with $(NH_4)_2HPO_4$ the product yield was: total metathesis 74%, homometathesis 52% and cross metathesis 21% (Table 1). In our work we used the last mentioned system.

3.6. Addition of PO_4^{3-} and Cs^+ ions

In Table 1 the combined effect on the product distribution is also given if both Cs^+ and PO_4^{3-} ions are present in the rhenium catalyst. Similar results of about 53% homometathesis products and about 17% cross metathesis products are obtained irrespective the order of addition.

4. Conclusions

The addition of Cs^+ and PO_4^{3-} ions to the 3% $Re_2O_7/SiO_2 \cdot Al_2O_3/SnMe_4$ catalyst system with a Sn:Re molar ratio of 2:1 causes an increase in the metathesis product yield with 1-octene but it also causes the increase in the

isomerisation and cross metathesis activity of the different catalysts.

A 2% Cs⁺, 2% PO₄³⁻ and also a combination of these two ions on a 3% $\text{Re}_2\text{O}_7/\text{SiO}_2$. Al₂O₃/SnMe₄ catalytic system gives the best result because it causes a high yield of homometathesis products and a relatively low yield of cross metathesis products. The activity of the system if a combination of the ions on the 3% Re_2O_7 system is used, is determined by the sequence of impregnation with the different ions (Table 1).

Acknowledgements

We want to thank SASOL, Foundation for Research Development and the Potchefstroomse Universiteit vir CHO for financial support.

References

- [1] R.J. Haines, C.J. Leigh, Chem. Soc. Rev. 4 (1975) 155.
- [2] K.J. Ivin, Olefin Metathesis, Academic Press, London, 1983, p. 1.
- [3] J.C. Mol, J. Mol. Catal. 65 (1991) 145.
- [4] G. Xiexian, X.U. Ylide, S. Yingzhen, Z. Yihua, J. Mol. Catal. 46 (1988) 119.
- [5] J.C. Mol, Chemtech (1983) 250.
- [6] A.A. Olsthoon, J.A. Moulijn, J. Mol. Catal. 8 (1980) 147.
- [7] M. Sibeijn, J.C. Mol, Appl. Catal. 67 (1991) 279.
- [8] A. Andreini, J. Mol. Catal. 65 (1991) 359.

- [9] X. Xiaoding, J.C. Mol, C. Boelhouwer, J. Chem. Soc. Faraday Trans. 82 (1986) 2767.
- [10] R. Spronk, Alkene Metathesis Over Supported Rhenium Catalysts, PhD thesis, Univ. of Amsterdam (1991) p. 13.
- [11] F.D. Hardcastle, I.E. Wachs, J.A. Horsby, H.V. Grayson, J. Mol. Catal. 46 (1988) 15.
- [12] H. Ahn, K. Yamamoto, R. Nakamura, H. Niiyama, Chem. Lett. (1992) 503.
- [13] J. Bregeault, B. El Ali, J. Martin, C. Martin, F Dender, G. Bugli, M. Delamar, J. Mol. Catal. 46 (1988) 37.
- [14] A.M. Turek, I.E. Wachs, E. Decanio, J. Phys. Chem. 96 (1992) 5000.
- [15] M.A. Vuurman, D.J. Stufkens, A. Oskam, I.E. Wachs, J. Mol. Catal. 76 (1992) 263.
- [16] X. Xiaoding, J.C. Mol., J. Chem. Soc., Chem. Commun. (1985) 631.
- [17] X. Xiaoding, J.I. Benecke, C. Boelhouwer, J.C. Mol, Appl. Catal. 28 (1986) 271.

- [18] M. Sibeijn, R. Spronk, J.A.R. van Veen, J.C. Mol, Catal. Lett. 8 (1991) 201.
- [19] H.C.M. Vosloo, J.A.K. du Plessis, S.A. Tydskr. Natuurwet. Tegn. 7 (1988) 154.
- [20] R. Spronk, A. Andreini, J.C. Mol, J. Mol. Catal. 65 (1991) 219.
- [21] J.C. Mol, J.A. Moulijn, in: J.R. Anderson, M. Boudart (Eds.), Catalysis, Science and Technology, Vol. 8, Springer-Verlag, Berlin, 1987, p. 69.
- [22] T. Kawai, Y. Yamazaki, T. Taoka, K. Kobayashi, J. Catal. 89 (1984) 452.
- [23] M. Sibeijn, J.A.R. van Veen, A. Bleik, J.A. Moulijn, J. Catal. 145 (1994) 416.
- [24] A. Ellison, A.K. Coverdale, P.F. Dearing, Appl. Catal. 8 (1983) 109.
- [25] J.C. Mol, A. Adreini, J. Mol. Catal. 46 (1988) 15.
- [26] J.C. Mol, J.A. Moulijn, J. Mol. Catal. 46 (1988) 1.
- [27] K. Ichikawa, K. Fukuzumi, J. Org. Chem. 41 (1985) 2633.